
We spend billions of dollars every year buying pills, potions, and creams that promise to slow the aging process. But what if we could enlist our own bodies to help us live longer, healthier lives?
Meet your mitochondria — the tiny factories in each of our cells that turn the food we eat and the oxygen we breathe into energy.
When the communication breaks down between our cells’ nuclei and their mitochondria, aging accelerates.
But here’s the exciting news — the opposite is also true: When intracellular communication is improved, the aging process slows down, and overall health and vitality improve.
Researchers used to think that unavoidable mitochondrial mutations were to blame for such aging-related miscommunications, but they’ve now discovered that such disconnects can be repaired if the mutations have not advanced too far.
“The aging process, we discovered, is like a married couple,” states Harvard Medical School biologist David Sinclair, PhD. “When they are young, they communicate well. But over time, living in close quarters for many years, communication breaks down.”
Fortunately, Sinclair notes, “restoring communication solves the problem.”
The great thing is, caring for your mitochondria and upgrading their communication network doesn’t just help slow down the aging process. It can also enhance your energy, metabolism, and cognitive powers. And it can reduce your risk of age-related diseases like cancer, Alzheimer’s, heart disease, and infertility.
Ready to embark on a mitochondrial makeover? Here’s what you need to know about your body’s primary power source.
Why Mitochondria Matter
First, to grasp the sheer scale of mitochondria’s impact on our overall health, consider this: Each of us has quadrillions (that’s thousands of trillions) of these energy factories in our bodies.
Each mitochondrion is filled with some 17,000 biochemical assembly lines, all designed to produce a molecule called adenosine triphosphate, or ATP — our bodies’ major, most elemental fuel.
The more energy a tissue or organ demands for proper function, the more mitochondria its cells contain. Mitochondria are especially abundant in the cells that make up our hearts, brains, and muscles.
In fact, the heart is so energy-intensive that up to 40 percent of the space in its cells is taken up with mitochondrial power plants.
The density and health of the mitochondria in your organs and muscles are, to a large extent, a reflection of your current level of health and fitness. (Lean muscle tissue, for example, contains far more mitochondria than fat does, and a strong heart is likely to be denser with mitochondria than a weak one.)
The more healthy mitochondria your body contains, the better you’ll feel, and the more robust your metabolism will be. A mighty mitochondrial force translates to better energy and focus, and greater ability to sustain high levels of activity without fatiguing.
Mitochondria produce energy by breaking down food, explains Bruce H. Cohen, MD, a neurologist at Northeast Ohio Medical University and an expert in mitochondrial disease. Then they release that energy in the form of ATP, along with some byproducts, like carbon dioxide, water, and free radicals.
Free radicals are charged, highly active molecules that careen around the body, reacting with tissue. In moderation, free radicals can help us fight infection. In excess, however, they wreak havoc, damaging cell tissue, eroding our bodies, and causing runaway inflammation.
The health implications of such mitochondria-related damage can be far-reaching, says pediatric neurologist Jong Rho, MD, of the University of Calgary and Alberta Children’s Hospital.
When children are born with genetic defects that negatively affect their mitochondria, he explains, the downstream effects can include loss of motor control, muscle weakness and pain, gastrointestinal disorders, swallowing difficulties, poor growth, cardiac disease, liver disease, type 2 diabetes, respiratory complications, seizures, visual or hearing problems, developmental delays, and susceptibility to infection — just to name a few.
But even those of us who start life with healthy mitochondria can undermine and deplete them through basic wear and tear, or through outright abuse.
Stress, sedentary lifestyles, free-radical damage, and exposure to infections, allergens, and toxins can all cause our energy-generation network to falter.
But one of the chief reasons our mitochondria deteriorate, says Cohen, is that we eat an excess of poor-quality foods and a deficit of healthy ones.
The empty calories of sugars, flours, and other processed foods force mitochondria to burn through a great deal of junk — generating free radicals and inflammation as they go — before useful nutrients can be siphoned out.
The glycemic impact of such foods (to say nothing of their trans fats, chemical additives, and other proinflammatory factors) only exacerbates the damage.
And unless we are eating plenty of phytonutrients, antioxidants, healthy fats, proteins, and fiber, we aren’t giving our bodies the basic tools they need to repair the damage.
The overfeeding and undernourishing of our mitochondria help explain the twin epidemics of obesity and type 2 diabetes, Cohen says.
The overworked pancreas produces so much insulin that it may burn out — or, alternatively, overwhelm the receptors on cell membranes until they become resistant to insulin and unable to transport it to the cells’ mitochondria for energy production.
It’s important to recognize, Cohen adds, that from a genetic standpoint, our mitochondria were never designed for the food environment and lifestyle to which we now subject them.
Furthermore, he argues, our ancestors rarely lived to 70, 80, or 90 years. So we now are asking our mitochondria to perform longer under far more challenging conditions.
The net result: Unless we take good care of our mitochondria, at minimum we are likely to feel fatigued and fuzzy-brained. We also run a greater risk for a number of ailments, including obesity, type 2 diabetes, and neurodegenerative disease.
Nutritional Tune-Up

There is perhaps no one who has a better understanding of the relationship between nutrition and mitochondrial health than Terry Wahls, MD, clinical professor of medicine at the University of Iowa.
Wahls, diagnosed with multiple sclerosis (MS) more than a decade ago, credits an intensive nutritional strategy with helping her to overcome the neurodegenerative brain disease (see “Curing the ‘Uncurable,’” below).
In her book, The Wahls Protocol, she outlines how she repaired her mitochondria and recovered her health by combining a Paleolithic diet, targeted supplementation, and other lifestyle adjustments.
For both general and mitochondrial health, Wahls recommends avoiding foods containing gluten, as well as dairy products, eggs, processed meats containing nitrates, and anything sweetened with sugar. For those especially concerned with their health, Wahls also recommends avoiding all grains, legumes, peanuts, and soy.
Beyond removing these foods, Wahls suggests eating six to nine cups of vegetables and fruits daily, including three green, three deeply colored, and three rich in sulfur (e.g., arugula, broccoli, bok choy). She also recommends eating 6 to 12 ounces of grassfed meat or wild-caught fish daily, plus, for die-hard types, a 14-fluid-ounce can of full-fat coconut milk.
At full force, Wahls’s diet becomes “ketogenic” — that is, so low in carbs and high in fat that the body stops getting energy from glucose (which comes from carbs) and starts burning fat instead.
During ketogenesis, fatty acids enter the liver, which breaks them down into “ketone bodies,” water-soluble biochemicals that can be used for energy, especially in the heart and the brain (two of the body’s most mitochondria-dense regions).
Although Wahls’s work with the ketogenic diet has been largely clinical, there’s strong laboratory evidence for the approach, and a powerful biochemical rationale behind it.
One of its leading advocates is neurologist Jong Rho, who says that in battling mitochondrial dysfunction, ketogenic diets may rank among the most promising treatment strategies available. “When mitochondria are fueled by ketones instead of glucose,” Rho explains, “their ability to produce ATP is enhanced and free-radical byproducts are reduced.”
Rho references laboratory evidence showing that a ketogenic diet can be protective against many diseases that affect the brain and nervous system (and where mitochondrial function is key), including Alzheimer’s, Parkinson’s, epilepsy, autism, even malignant brain cancer.
Metabolism Support
Targeted supplementation can also help reverse mitochondrial decay. At the forefront of this research is preeminent biochemist Bruce Ames, PhD, a professor emeritus at the University of California, Berkeley, and senior scientist at Children’s Hospital Oakland Research Institute.
For years now, Ames has been working on ways to protect and restore mitochondria in the brain. His goal is to halt and even reverse the cognitive and neurologic decline that usually comes with age.
Ames’s first line of attack was to try to reverse the mitochondrial deterioration that produces excess free radicals, a process he compares to “an old car engine producing too much smoke,” and thus, not running efficiently.
Aging mitochondria, with their inefficient machinery, damaged DNA, and decaying membranes, can’t clear the smoke, which leads to impaired memory and mental function over time.
The only means Ames knew to slow the process in animals was calorie restriction — flat-out reducing the amount of fuel burned. But it’s hard (and not healthy) to starve humans, so Ames vowed to find another way.
He experimented in the lab, trying out various supplements on a group of aging rats. Acetyl-L-carnitine (ALC), which is known for transporting fatty acids into the mitochondria, shored up the membranes and helped repair the mitochondrial DNA, but it didn’t decrease free-radical production. So, he added alpha-lipoic acid (LA), a mitochondrial coenzyme capable of cleaning up the messes free radicals make.
The result? Ames’s older lab rats — who couldn’t run well on a treadmill and couldn’t navigate in a water pool — were rejuvenated. Their running and swimming improved. Their mitochondria became more youthful, too.
Ames discovered that a host of different micronutrients are involved in mitochondrial health. Looking at human cells, for example, Ames found damage to DNA whenever even one of a number of minerals or vitamins was removed.
To explain the phenomenon, Ames came up with a theory rooted in our hunter-gatherer past, when micronutrient shortages must have been recurrent: To make sure the species was perpetuated, natural selection imposed a “strategic rationing response,” shunting the vital nutrients toward functions essential for short-term survival and reproduction, and away from longevity systems affected by dysfunctional mitochondria.
Joyce McCann, PhD, who works in Ames’s lab, suggests that this metabolic tradeoff accelerates diseases, such as cancer, cardiovascular disease, immune dysfunction, and cognitive decline.
Although a variety of lifestyle factors contribute to mitochondrial health, says Ames (see below), the single most important thing we can do is to eat a well-balanced, whole-foods diet.
Because research suggests that virtually all U.S. adults are deficient in one or more important nutrients, many experts recommend supplementing with a high-quality multivitamin, vitamin D, essential fatty acids — and perhaps more, depending on your individual profile.
But a cautionary note comes from Bruce Cohen, who points out that many nutrition studies have been done only with mice or cell cultures. “When you try the strategies on humans,” he says, “they don’t always work.”
Wahls is trying to set that right. Her pilot study on the Wahls Protocol, which studied 13 MS patients, was published in The Journal of Alternative and Complementary Medicine earlier this year. Within the study group, six people rigorously adhered to the protocol — including a paleo diet, exercise, meditation, and massage — for a full year. Those patients, who normally would have experienced only further decline, showed clinically significant improvement in fatigue symptoms compared with their baseline assessments.
A great deal more research is necessary, notes Wahls. But eating for your mitochondria, she argues, is almost guaranteed to pay off. “I am the canary in the coal mine, here as a warning to all of you,” Wahls says. “If we don’t care for our mitochondria, we will pay a very high price when it comes to our health.”
This article has been updated. It was originally published in the November 2014 issue of Experience Life.
I be interested to know if intense athletic lifestyle combined with a poor diet leads to rapid onset of problems like mitochondrial myopathy as it did in Terry Wahls (and Greg Lemond – who also has a book on a similar topic.)
I was diagnosed with the autoimmune disease primary biliary cholangitis and also diabetes perhaps Heptagenesis diabetes. To be included in the PBC diagnosis, I had an elevated mitochondria m2 (autoimmuine) which I did. After utilizing this article, my mitochondria was zero! No one can explain this result!
Excellent info…thank you. No one ever would think about our Mitochondria health and yet most all of us has this deficit these days.
Thanks for this informative and well-written article.
I am curious, though, as to the large amount of fruit this diet may contain. Nine cups of fruits and vegetables would likely be enough carbohydrate to prevent ketosis, particularly if, as dusggested, there are root veggies like beets and carrots and if there’s more than a serving or two of berries or other less sugary fruit. Also, processing fruits or veggies into smoothies actually increases their glycemic index, also counter productive if the aim is ketosis.
I was diagnosed with autoimmune primary biliary colangitus 9 years ago. I began eating much better. I had a mitochondrial measure of 143 positive. In 2 years my count is zero at last test. My group on line PBC had never heard of this. THERE IS NO PLACE TO CHECK “GOT IT ON MY PHONE. I HOPE YOU GET THESE COMENTS.
FASCINATING AND HOPEFUL
I lost my brother to MS a year ago
Thank you very much for an excellent article, very informative, and to the point.
Dr Wahl has done a wonderful job.
JUST A PRE-CAUTION: PRE-CANCER AND CANCER CELLS CAN AND DO USE (WHEN NEEDED) THE AMINO ACID “L-GLUTAMINE” AS FUEL, ALONG WITH GLUCOSE SUGAR, THE PRIMARY FUEL, ACCORDING TO NUMEROUS PUBLISHED ONCOLOGIC CELL BIOLOGY PAPERS. SO, IF YOU DON’T HAVE A DIAGNOSIS OF CANCER, THEN FINE TO USE BONE BROTH FROM CHICKEN BONES.
BOB K.
Great article – valuable content that sparks starting points to a host of further research and opportunities for understanding. A clear and simple conceptual model, beautifully explained with tight prose and helpful visuals. Nice work – thankyou so much!
A quick search in magnesium aspartate pulls up studies on it as a neurotoxin!! (when not accompanied by other amino acids). Worth double checking the safety of that one and adding a warning to people to do their research before taking it. Sounds dodgy.
Great article! I was disabled by taking a ten day course of the antibiotic Levaquin a little over eleven years ago, and just recently have been reading that researchers believe that class of drug (fluoroquinolones) can cause damage to the mitochondria. I’ve had a vast and bizarre range of symptoms, including periods of time where it felt like my meat was sliding loose on the bone, and other times as though everything inside me was so tight, I could barely move. I have suffered with crippling aches and pains, immobilizing depression and anxiety, a ridiculous amount of allergies and chemical sensitivities, and a host of neurological disorders…all beginning just hours after I took the first pill, and ongoing until this day. I wanted to comment, however, that the one thing that has ever helped to relieve me of the heavy burden I struggle with on a daily basis was during those times when I put myself into ketogenisis. Not that my symptoms disappeared completely, but they became significantly more manageable – I’d say from a daily average of 8, all the way down to a 3 or less. The one other thing that has made a huge impact on conquering my pains was something called ‘ozone major autohemotherapy’ – where a pint of my blood was withdrawn and infused with a specific mixture of oxygen and ozone, then slowly readministered back into my bloodstream; a procedure that was repeated once a day for ten consecutive days. By the fifth day, I felt almost entirely normal, again, and continued to live virtually symptom-free for the following six months, at which time the effects began to wear off. I just wanted to share that with everyone. Maybe it can help…
I have been on a similar journey. Have done almost the things that you have done. However, you have some extra goodies for me to try. I will do so and get back to you. Thankyou!
Hi there, I just want to say that I am a 55 year old woman on a similar health journey and I have been doing a similar type of programme to yours. My energy and vitality levels are considerably higher and I have much less inflammation than before. There are some extra steps in your protocol that I did not know. I look forward to trying them and will get back to you with the results. Warm wishes, Glori
very interesting and informative. I am interested in a vegetarian option. I would like to incorporate this into my lifestyle without compromising my vegetarian beliefs.